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FLUTTER SUPPRESSION DIGITAL CONTROL LAW DESIGN
AND TESTING FOR THE AFW WIND-TUNNEL MODEL
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SUMMARY

Design of a control law for simultaneously suppressing the symmetric and
antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind-tunnel model
is described. The flutter suppression control law was designed using linear quadratic

INTRODUCTION

A summary of the Active Flexible Wing (AFW) Program is presented in Ref. 1. Within
the operating range of the Langley Research Center Transonic Dynamics Tunnel, the sting
mounted AFW aeroelastic model had both symmetric and antisymmetric flutter modes, in a
fixed-in-roll configuration, and a symmetric flutter mode only, when the model was in a
free-to-roll configuration. The active flutter suppression system (FSS) test goals were to
demonstrate: a) simultaneous symmetric and antisymmetric flutter suppression for the
fixed-in-roll configuration, and b) symmetric flutter suppression in the free-to-roll
configuration. An additional goal was to test a rolling maneuver load alleviation system
along with the FSS above the open-loop flutter boundary. Since the free-to-roll symmetric
flutter and the fixed-in-roll Symmetric and antisymmetric flutter modes had very similar
characteristics, a single FSS control law was designed and demonstrated for both the flutter
test configurations, a) and b) as stated above. This paper addresses the mathematical
modeling, control law design and wind-tunnel test results.

NOMENCLATURE

control law state-space matrices
control law output matrices
Kalman state estimator gain matrix
optimal regulator gain matrix
expectation operator

plant state-space matrices

gust input matrix

gravitational acceleration constant
sensor output matrix
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identity matrix

Mach number

estimator Riccati equation solution
dynamic pressure, psf

flutter dynamic pressure, psf
plant output weighting matrix
control input weighting matrix
measurement noise intensity matrix
gust input noise intensity
regulator Riccati equation solution
Laplace variable

sample period, seconds

time, seconds

control input vector

measurement noise vector

gust input noise

frequency, radians/second
plant state vector

control law state vector
measurement vector

accelerometer output, g's
control surface angular position, degrees

rQOA= VT

<

)
£

wing leading edge inboard
wing leading edge outboard
wing trailing edge inboard
TEO wing trailing edge outboard
tip wing tip
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Abbreviations:

AFW active flexible wing

CL  closed loop

CPE controller performance evaluation
FSS flutter suppression system

LQG linear quadratic Gaussian

OL  open loop

psf  pounds per square foot

RMLA rolling maneuver load alleviation
rms  root mean square

SISO single-input single-output

AFW EQUATIONS OF MOTION

The description of the AFW aeroelastic wind-tunnel model and the wing-tip ballast
stores, including details of the accelerometer sensor positions and multiple control surface
actuation capabilities, are provided in Ref. 2. The accelerometer s€nsors and the control
surface locations on the wing-plan form are shown in figure 1. The development of the

aeroelastic equations of motion is described in Ref. 3. The equations for the symmetric and
antisymmetric motion were developed separately, using ten flexible modes for each



configuration. The flexible mode shapes and natural frequencies were derived from a finite-
element modal analysis and were corrected using ground vibration test data.

State-space Equations

A set of state-space mathematical models were developed3 for control law desi gn. For
the aeroelastic equations, the doublet-lattice oscillatory aerodynamics approximation used
four aerodynamic lag terms for each flexible mode, In addition, the state-space models
included corrections for control surface effectiveness based on results from the 1989 wind-

tunnel test2, and the third-order transfer functions of the actuator dynamics derived from
ground test of the unloaded control surfaces. A Dryden gust spectrum transfer function,

dx/dt = Fx + Gu + Gyw (D
and y=Hx+v 2)

where x is the state vector, u is the control input vector, w is the gust input noise, y is the
accelerometer sensor output vector, and v is the measurement noise vector. Equations (1)
and (2) were scaled such that the units of the control inputs were in degrees, the units of the
Sensor outputs were in g's, and the gust input unit was in feet/second.

Open-loop Dynamic Pressure Root-locus

Using these state-space mathematical models at six dynamic pressures, q =100, 150,
200, 250, 300 and 350 psf, the flexible-mode root-loci with dynamic pressure were
studied. The open-loop, dynamic pressure root-locus of the first four flexible symmetric
and antisymmetric modes, for the fixed-in-roll configuration, are shown in fi gures 2 and 3,
respectively. The figures 2 and 3 indicate that the second and third flexible mode
frequencies coalesced to produce the flutter instability. The unstable mode was primarily
wing-tip torsion, for both the symmetric and the antisymmetric motions. The sixth and
seventh symmetric flexible mode frequencies also tended to coalesce (not shown in figure
2). At Mach 0.5, the analytical open-loop symmetric flutter dynamic pressure was

CONTROL LAW DESIGN

The flutter suppression design objective was to develop low-order robust di gital control
laws which would simultaneously suppress the symmetric and antisymmetric flutter modes
of the model in the fixed-in-roll configuration with allowable control surface activity. The
maximum permissible control surface rms deflection and rates were 1.0 degree (at 11.2 Hz
flutter frequency) and 75 degrees/second, respectively. From the 1989 test 2, the
antisymmetric flutter frequency was known to be 1.8 Hz below the analytical value. The
control law was also required fo be sufficiently robust to compensate for this difference.
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The FSS control laws were designed using linear quadratic Gaussian (LQG) theory and
involved control law order reduction, a gain root-locus study, and use of previous
experimental results2. Since the symmetric and antisymmetric flutter modes had very
similar characteristics for the fixed-in-roll configuration (see figures 2 and 3), a single FSS
control law was designed to suppress both the flutter modes. This control law used the Ztip
pair of accelerometers and the TEO pair of control surfaces on the right and left wings. The
block diagram for digital implementation2 of the symmetric and antisymmetric FSS control
laws is shown in Figure 4. The accelerometer outputs from the left and right wing were
passed through 25 Hz first-order antialiasing filters, modeled by the transfer function
157/(s+157) and converted into digital data at a sampling rate of 200 Hz. The digital
controller separated the data into symmetric and antisymmetric components, computed the
digital control law outputs and then distributed the processed feedback signals to the right
and left actuators after 0.005 seconds computational delay.

Design Plant Model

The 68th order antisymmetric state-space equation at g = 350 psf for the fixed-in-roll
configuration was used as the design plant model, since from the analysis and the 1989
test, the antisymmetric flutter mode was found to be most critical and was encountered at a
lower dynamic pressure than the symmetric flutter mode. The accelerometer sensors and
control surfaces were selected based on the frequency response analysis of the open-loop

system. The ZTEO and Ztip accelerometer responses were predominant at the wing-tip
torsion frequencies due to the excitation from TEI and TEO control surfaces. In addition,

the Ztip sensor exhibited relatively low response at frequencies above 25 Hz. Therefore,

ZTEO and Ztip accelerometer sensors and TEI and TEO control surfaces were initially studied
as candidates for measurement inputs and control outputs, respectively.

Full-order LQG Design

A full order LQG control law was designed using the design plant model state-space
equations (1) and (2). The full-order LQG control law which is given by equations (3) and

(4), minimizes a weighted quadratic cost function defined by E[yTQiy + uTQqu], where Qg
and Q, are the plant output and control input weighting matrices 4.

ch/dt = Apxc+t Boy, (3)
u = COXC ’ (4)
where
Ao= [F—-BoH+ GCol
Bo = PHTR,
Co=- QrIGTS.

The matrices Bg and Co are the Kalman state estimator gains and the full-state optimal
regulator gains, respectively. The matrices P and S are the positive definite solution of the
steady state dual matrix Riccati equations, given by

FP + PFT + GyRyGyT - PHTR,IHP = 0
SF + FTS + HTQ;H — SGQ"!GTS

[
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where Ry, and Ry denote the intensity matrices of the gust input and measurement
Gaussian white noise processes, w and v, respectively. To obtain the LQG control law,
full-state optimal regulator gain matrix Co was first determined using a unit output
weighting matrix, Q1 =1, and a control weighting matrix Q, = 0.001 I, where I is a 2x2
identity matrix. Then the Kalman state estimator gain matrix Bo, was determined using Ry,
=0 and Ry = I. The final selection of these weighting and noise intensity matrices for the
full order control law, and the subsequent order reduction process were determined after
several design iterations, until a stabilizing low order controller was found for the nominal
design plant model. The control law order reduction process is described next.

Order Reduction

The full 68th order LQG control law given by equations (3) and (4) was first block-
diagonalized, and then reduced to 11th order by residualization of all the damped modes
above 19 Hz. Equations (3) and (4), in block-diagonalized form, are shown in equations (5)
and (6), where the vector Xc1 represents the retained states and the vector Xc2 represents the
remaining states associated with the damped higher frequency dynamics.

d [X A0 x B
sl by e
X
u =[C, CoZ]{xz;} (6)

In the residualization procedure, only the steady state part of the stable higher frequency
dynamics in equation (5) were retained. This was accomplished by setting the state
derivative dxc2/dt to zero and solvin g for x¢2, provided the matrix Ao2 is nonsingular?.
The reduced state space model of the control law is given by equations (7) and (8).

dxc/dt = Axc+By @))
u = Cxc+Dy (8)
where
XC=Xcl,B=B01,C=C01

and D =~ Cp2 Ap2'! Bp).

This procedure introduced a direct feedthrough matrix D in equation (8). The
residualized 11th-order control law was subsequently reduced to a second-order control
law by balanced realization and truncation of the balanced system. The balanced realization
procedure finds a linear transformation in which the control law states have equal
controllability and observability properties®. The weakly controllable and observable states
are then truncated. Even with the elimination of these states, the resulting set of equations
retained the most important input-output characteristics of the original system. This second-
order, two-input two-output control law, is given by equations (9) and (10).

dx, =[—5.2 64.6 1 1.25 1.95 7jZg,
dt |-64.6 —52 [** | 045 .73 || %, )

o ..
TH | _| -04 2.1 -0.06 —0.091) Zg,
Bl Bk [0 ool
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The corresponding Bode diagrams of the four components of this 2x2 control law are
shown in Figure 5. This figure indicates that the maximum gain of this control law was 2.5
deg/g (8 dB) with a peak gain at 10.3 Hz. The primary stabilizing gain of this control law

was from the sensor an to the control surface dTEo. Although this control law stabilized
the symmetric and antisymmetric plant models at 350 psf, the step responses contained
high frequency components. With the addition of 25 Hz antialiasing filters to each
accelerometer channel, the high frequency components of the step responses were
eliminated. However, with the addition of T=0.005 second computational delay ( modeled
by the first-order Pade approximation (2/T -s)/(2/T+s) ), the system was marginally stable.
It was also noted that, when this control law was reduced to a single-input single-output

(SISO) control law by retaining only the control law input Zip and the output dtEO, the
nominal design plant was also stable. This simplified SISO control law was therefore,
studied further in order to compensate for the computational delay effects, and possible
uncertainty in the actual flutter frequencies, as mentioned earlier.

SISO Control Law

This simplified SISO control law (plot labeled by Smolznp in figure 5) was improved
further via gain augmentation. The required gain level was determined using a gain root-
locus analysis. The output gain feedback root-locus of the design plant model at 350 psf,

with Stgo as plant input, and Zip as plant output, is shown in figure 6. This root-locus
indicated that the open-loop unstable pole (mode 3) near 11 Hz migrated into the stable left

half plane, with a negative feedback gain of 1.3 deg/g from Ztjp 10 Stgo. However, the
actuator poles near 50 Hz become unstable at a gain of 0.75 deg/g. Therefore, a gain level
of at least 1.3 deg/g in the 8 to 12 Hz frequency range, with subsequent gain attenuation at
higher frequencies, was necessary to stabilize the system, and accommodate the possible
difference between the analytical and experimental flutter frequencies. In addition,
compensation for the phase lag effects of the antialiasing filter and one cycle computational
delay was also required. The total phase lag introduced by these two effects was about 40
degrees at the frequency 10 Hz.

The gain and phase compensations were achieved by varying the three elements of C
and D in the SISO control law, and studying the gain and phase diagrams and the closed
loop stability responses. An increase in C1 and decrease in ICyl resulted in a desirable phase
increase at low frequencies. An increase in D reduced the phase (towards zero) at high
frequencies, which was also beneficial. These three parameters were varied, until a gain-
level near 1.3 deg/g (2.3 dB) was maintained over the frequencCy range 8 to 12 Hz, and
sufficient phase lead was obtained. The real part of the control law complex pole was also
moved from - 5.2 to - 6.0 to achieve a wider gain range. The high frequency gain was
kept below 0.75 deg/g. This modified SISO control law is given by equations (11) and
(12), assuming negative feedback.

dx, _[-60 6461  [195 ],
&t _64.6 —6.0] %™ | -0.73] Zip 1)
dppo = | 144 ~3.1]x, + 0.63 Z (12)



The corresponding gain and phase plots are shown in figure 5 and are labeled 8tgo/Ztip
(SISO). The complex poles and zeros of this control law were -6+j64.6 and -30+j56,
respectively. A second-order notch filter, given by the transfer function (52+425+44100)/

(s2+84+44100 ), was added to increase the symmetric model gain margin to 6 dB, near 33
Hz. This filter attenuated a 33 Hz lightly damped oscillation due to the interaction of the
sixth and seventh symmetric flexible modes. A first-order washout filter, given by the
transfer function s/(s+6), was also added to remove any steady state input bias to the sensor
signal.

Discretization. The resulting Sth order SISO control law in Laplace domain was
discretized using the Tustin transformation z = (1+sT/2) /(1-sT/2), where T is the sampling
interval. For the 200 Hz sampling rate used by the digital controller, T = 0.005 seconds.
With the Tustin transformation at this sampling rate, the Bode diagrams in the Laplace
domain and the discrete domain were almost identical below 15 Hz. Hence no frequency
warping corrections were applied.

Dynamic-pressure root-locus: The open- and closed-loop dynamic pressure root-locus
plots are compared in figures 2 and 3. These comparisons indicated that both the symmetric
and antisymmetric models were stable, up to dynamic pressure q = 350 psf. The closed-
loop frequency decoupling was due to lowering of the frequency of mode 2 to about 6.8
Hz. The frequency of mode 3 was increased to 11.6 Hz, but the damping ratio was only of
the order 0.010 at 300 psf.

Sensitivity studies. The closed-loop system sensitivity was studied by perturbing the
second and third modal frequencies in the state-space block-diagonalized plant model by
110% and the nominal gains by +4 dB at q =250 psf and examining the closed-loop
system step responses, for all possible combinations. These studies indicated that the
design could accommodate simultaneous gain and frequency changes for all cases except
when the second and third mode frequencies were perturbed to approach each other.
Sensitivity studies were also done using the state-space model with and without the 25 Hz
antialiasing filters, with and without one cycle delay, with additional delays, and with + 6
dB gain perturbations at 250 psf. These studies indicated that the symmetric configuration
could tolerate one additional delay (or phase lag of 1.8 degrees/Hz) at half the nominal
gain, but the antisymmetric configuration would become unstable with an 11 Hz
oscillation. The phase and gain margin comparisons with the experimental results,
described in the next section, indicated that this particular situation may have been
encountered during the experiment. The gain loss was apparent from the experimental Bode
diagram.

SUMMARY OF TEST RESULTS

Open-loop Flutter. Based on examination of the peak-hold data obtained during the wind
tunnel test with the tip ballast store coupled, the open-loop (OL) flutter dynamic pressures
were as follows: The free-to-roll OL symmetric flutter was at a dynamic pressure of 235
pst, at a frequency of 9.6 Hz. The fixed-in-roll OL antisymmetric flutter was at a dynamic
pressure of 219 psf, at a frequency of 9.1 Hz. These experimental symmetric and
antisymmetric OL flutter dynamic pressures were, respectively, 13 and 14 psf below the
predicted values, and the flutter frequencies were, respectively, 1.6 Hz and 1.8 Hz below
the predicted values.
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Open-loop frequency responses. Figures 7 and 8 show the OL frequency responses of

Ztip due to 8o from analysis and experiment at 250 psf, for the symmetric and
antisymmetric (fixed-in-roll) cases, respectively. At this dynamic pressure, the OL plant is
unstable. So, the OL frequency responses were computed from closed-loop (CL)
experimental data, using the Controller Performance Evaluation (CPES.7) procedure.
Figure 7 indicates good agreement below 9 Hz and qualitative agreement above 12 Hz.
Above 12 Hz, the magnitudes differ by about 5 dB while the phase angles are nearly equal.
Figure 8 indicates fair agreement, below 7 Hz, and qualitative agreement above 12 Hz.
Above 12 Hz, the magnitudes differ by 6 to 8 dB and the phase angles differ by 10 to 20
degrees. Note, that for each phase diagram, the 180 degree crossing occurs near the
respective OL flutter frequencies, and the difference between their predicted and
experimental values is quite apparent.

Closed-loop Tests

The active flutter suppression test results are summarized in figures 9 through 13.
Figures 9 and 10 show the wind-tunnel test dynamic pressures versus the free stream Mach
number. During the wind-tunnel test, in the fixed-in-roll configuration, with both the
symmetric and antisymmetric ESS control laws operating, the CL system was stable up to
q = 270 psf, at Mach 0.46. This augmented q represents a 23% increase over the OL

antisymmetric gf.

During the wind-tunnel test, in the free-to-roll configuration, with the symmetric FSS
control law operating, the CL system was stable up to q = 290 psf, at Mach 0.48. This
augmented q represents a 23% increase over the OL symmetric gf as shown in figure 10.
This FSS control law also suppressed the flutter when a Rolling Maneuver Load
Alleviation (RMLAB) system was tested with rapid roll maneuvers atq = 260 psf, 11%
above the OL symmetric flutter boundary. This RMLA control law used LEO and TEI
control surfaces, so the interaction with the FSS control law was minimal.

The rms deflection and deflection rate of the right and left side TEO control surface
were computed from the data sampled at 200 Hz at each fixed-in-roll FSS test condition. If
the value of the right and left differed, the maximum is plotted in figure 11. The maximum
mms deflection and rates were less than 0.4 degrees and 25 degrees/second, respectively.
These maximum rms deflection and rate demands of the actuators were well below the
maximum allowable values of 1 deg and 75 deg/sec as stated earlier in the paper.

The Nyquist-diagram-based gain- and phase-margins were estimated using the CPE
technique, during the experiment. These estimates were compared with corresponding
analytical quantities in figures 12 and 13, for the symmetric free-to-roll and the
antisymmetric fixed-in-roll configurations, respectively. For the symmetric, free-to-roll
configuration (figure 12), the analytical and experimental gain margins were above +6 dB
up to 270 psf. The analytical positive phase margins (at or below 7 Hz) were about 20
degrees, but the negative phase margins (at or above 12 Hz) were well above 45 degrees.
The analytical phase margins were close to experimental results up to about 270 psf.

For the antisymmetric, fixed-in-roll configuration (figure 13), the analytical negative
gain margins were only -3 dB.The analytical positive phase margins (at or below 7 Hz)
were about 20 degrees, but the negative phase margins (at or above 12 Hz) were 45
degrees. The analytical phase margins were close to the experimental data at 250 psf,
because the design model was fairly accurate at frequencies below 7 Hz (see figure 8). The
negative gain and phase margins at the high frequency end were primarily responsible for



preserving the system stability. The source of additional phase lag with increasing dynamic
pressure was possibly due to highly loaded actuators. The gain loss was apparent from the
experimental Bode diagram shown in figure 8 in the 8 to 12 Hz frequency range.

CONCLUDING REMARKS

A single-input single-output control law was designed for flutter suppression using
linear quadratic Gaussian theory and involved control law order reduction, a gain root-
locus study and use of previous experimental results. The control law was di gitally
implemented and tested. Simultaneous suppression of symmetric and antisymmetric flutter
modes in close proximity was demonstrated to 23% above the open-loop antisymmetric
flutter boundary when the model was in a fixed-in-roll configuration. Symmetric flutter
suppression system operating simultaneously with a rolling maneuver load alleviation
system was tested to 23% above the open-loop symmetric flutter boundary, when the
model was in a free-to-roll configuration. With this combined system, rapid roll maneuvers
were also performed at 11% above the symmetric flutter boundary.
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